1 A sequence is defined by $u_{1}=2$ and $u_{k+1}=\frac{10}{u_{k}^{2}}$.
Calculate $\sum_{k=1}^{4} u_{k}$.
[3]

2 The nth term of a sequence, u_{n}, is given by

$$
u_{n}=12-\frac{1}{2} n .
$$

(i) Write down the values of u_{1}, u_{2} and u_{3}. State what type of sequence this is.
(ii) Find $\sum_{n=1}^{30} u_{n}$.

3 A sequence is defined by

$$
\begin{aligned}
u_{1} & =10, \\
u_{r+1} & =\frac{5}{u_{r}^{2}} .
\end{aligned}
$$

Calculate the values of u_{2}, u_{3} and u_{4}.
What happens to the terms of the sequence as r tends to infinity?

4 The nth term, t_{n}, of a sequence is given by

$$
t_{n}=\sin (\theta+180 n)^{\circ} .
$$

Express t_{1} and t_{2} in terms of $\sin \theta^{\circ}$.

5 Jim and Mary are each planning monthly repayments for money they want to borrow.
(i) Jim’s first payment is $£ 500$, and he plans to pay $£ 10$ less each month, so that his second payment is $£ 490$, his third is $£ 480$, and so on.
(A) Calculate his 12th payment. [2]
(B) He plans to make 24 payments altogether. Show that he pays $£ 9240$ in total.
(ii) Mary’s first payment is $£ 460$ and she plans to pay 2% less each month than the previous month, so that her second payment is $£ 450.80$, her third is $£ 441.784$, and so on.
(A) Calculate her 12th payment.
(B) Show that Jim's 20th payment is less than Mary's 20th payment but that his 19th is not less than her 19th.
(C) Mary plans to make 24 payments altogether. Calculate how much she pays in total.
(D) How much would Mary's first payment need to be if she wishes to pay 2% less each month as before, but to pay the same in total as Jim, $£ 9240$, over the 24 months?

6 You are given that

$$
\begin{aligned}
u_{1} & =1, \\
u_{n+1} & =\frac{u_{n}}{1+u_{n}} .
\end{aligned}
$$

Find the values of u_{2}, u_{3} and u_{4}. Give your answers as fractions.

7 (i) Evaluate $\sum_{r=2}^{5} \frac{1}{r-1}$.
(ii) Express the series $2 \times 3+3 \times 4+4 \times 5+5 \times 6+6 \times 7$ in the form $\sum_{r=2}^{a} \mathrm{f}(r)$ where $\mathrm{f}(r)$ and a are to be determined.
$8 \quad$ (i) Find $\sum_{k=3}^{8}\left(k^{2}-1\right)$.
(ii) State whether the sequence with k th term $k^{2}-1$ is convergent or divergent, giving a reason for your answer.

9 (i) Find the second and third terms of the sequence defined by the following.

$$
\begin{align*}
t_{n+1} & =2 t_{n}+5 \\
t_{1} & =3 \tag{2}
\end{align*}
$$

(ii) Find $\sum_{k=1}^{3} k(k+1)$.

10 For each of the following sequences, state with a reason whether it is convergent, periodic or neither. Each sequence continues in the pattern established by the given terms.
(i) $3, \frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \ldots$
(ii) $3,7,11,15, \ldots$ [1]
(iii) $3,5,-3,-5,3,5,-3,-5, \ldots$

11 Find $\sum_{r=3}^{6} r(r+2)$.

12 Calculate $\sum_{r=3}^{6} \frac{12}{r}$.

12 A sequence begins

$$
\begin{array}{lllllllllll}
1 & 3 & 5 & 3 & 1 & 3 & 5 & 3 & 1 & 3 & \ldots
\end{array}
$$

and continues in this pattern.
(i) Find the 55th term of this sequence, showing your method. [1]
(ii) Find the sum of the first 55 terms of the sequence.

